Pearson Edexcel AS Mathematics 8MA0

Statistics – Hypothesis Testing

Time allowed: 45 minutes

School: www.CasperYC.club

Name:

Teacher:

How I can achieve better:

- •
- •
- •

Question	Points	Score
1	6	
2	7	
3	6	
4	5	
5	8	
6	12	
7	6	
Total:	50	

1.		ompany claims that a quarter of the bolts sent to them are faulty.	
	To t	test this claim the number of faulty bolts in a random sample of 50 is recorded.	
	(a)	Give two reasons why a binomial distribution may be a suitable model for the number of faulty bolts in the sample.	[2]
	(b)	Using a 5% significance level with the model of a binomial distribution, find the critical region for a 2–tail test of the hypothesis that the probability of a bolt being faulty is 0.25. The probability of rejection in each tail should be less than 0.025.	[4]
			Total: 6

2.	(a) Define the critical region of a test statistic.	[2]
	A discrete random variable X has a binomial distribution $B(30, p)$.	
	A single observation is used to test $H_0: p = 0.3$ against $H_1: p > 0.3$.	
	(b) Under $H_0: X \sim B(30, 0.3)$, using a 1% level of significance find the critical region of this	[3]
	test. You should state, to 2 significant figures, the probability of rejection.	
	The value of the observation was found to be 15.	
	(c) Giving a reason, carefully state the outcome of the test.	[2]
		Total: 7

3.	A single observation x is to be taken from a binomial distribution $B(20, p)$.	
	This observation is used to test $H_0: p = 0.3$ against $H_1: p \neq 0.3$.	
	(a) Under $H_0: X \sim B(20, 0.3)$, using a 5% level of significance, find the critical region for this test. You should state the probability of rejection in each tail, which should be less than 2.5% .	
	(b) State the actual significance level of this test.	[1]
	The actual value of x obtained is 3.	
	(c) State a conclusion that can be drawn based on this value, giving a reason for your answer.	[2]
		Total: 6

4.	A single observation x is to be taken from a binomial distribution $B(28, p)$.	
	This observation is used to test $H_0: p = 0.37$ against $H_1: p > 0.37$.	
	(a) Use your calculator to find the critical region for this test.	[3]
	Use a 5% significance level and show your working clearly.	
	The actual value of x obtained is 17.	
	(b) State a conclusion that can be drawn based on this value, giving a reason for your answer.	[2]
		Total: 5

5.	Linda regularly takes a taxi to work five times a week. Over a long period of time she finds the taxi is late once a week on average. The taxi firm changes her driver and Linda thinks the taxi is late more often. In the first week with the new driver the taxi is late 3 times. You may assume	
	that the number of times the taxi is late in a week can be modelled with a binomial distribution.	
	(a) Test, at the 5% level of significance, whether or not there is evidence of an increase in the proportion of times the taxi is late. State your hypotheses clearly.	[6]
	(b) One of the assumptions when modelling using a binomial distribution is that the probability of success p , in this case the probability the taxi is late, is constant throughout all the trials. Give two possible reasons why this assumption may not hold for this situation.	[2]
		Total: 8

[6]

[1]

[5]

12

6.	It is known from past records that 1 in 5 bowls produced in a pottery have minor defects. To	
	monitor production a random sample of 25 bowls was taken and the number of such bowls with	
	defects was recorded.	
	(a) Using a 5% level of significance, find critical regions for a 2-tail test of the hypothesis that	
	1 in 5 bowls have minor defects. The probability of rejection, in either tail, should be no more than 2.5% .	
	(b) State the actual significance level of the above test.	
	At a later date, a random sample of 20 bowls was taken and 2 of them were found to have minor	
	defects.	
	(c) Test, at the 10% level of significance, whether or not there is evidence that the proportion	
	of bowls with minor defects has decreased. State your hypotheses clearly.	
	T	otal:

[6]

	these seeds germinating is 0.25	5. Ten of Bra	ad's seeds germi		
	. h l- h - d d di d - d + h i-			nated. He claimed	d that the
gardening	g book nad underestimated this	s probability.	Test, at the 5%	level of significan	ce, Brad's
	ate your hypotheses clearly.	1	,	O	,

